Search This Blog(textbook name or author as the keywords)You can cantact me by the Contact Form

1/2/12

statistics for management and economics - gerald keller (9th ed) solutions manual and test bank

Statistics for Management and Economics, 9th Edition solutions manual and test bank by gerald keller
  • includes Online Content Printed Access Card
  • Gerald Keller Wilfrid Laurier University
  • ISBN-10: 0538477490
  • ISBN-13: 9780538477499



Book Resources

Instructor’s Solutions Manual
for


Statistics for Management and Economics
Ninth Edition


Prepared by
Gerald Keller
Wilfrid Laurier University




TABLE OF CONTENTS
How the Solutions Were Produced                                            1
Chapter 1: What is Statistics?                                            3
Chapter 2: Graphical Descriptive Techniques I                                5
Chapter 3: Graphical Descriptive Techniques II                              37
Chapter 4: Numerical Descriptive Techniques                                105
Chapter 5: Data Collection and Sampling                                         153
Chapter 6: Probability                                                         157
Chapter 7: Random Variables and Discrete Probability Distributions           187
Chapter 8: Continuous Probability Distributions                             215
Chapter 9: Sampling Distributions                                             229
 Chapter 10: Introduction to Estimation                                            239
Chapter 11: Introduction to Hypothesis Testing                               247
Chapter 12: Inference about One Population                                    269
Chapter 13: Inference about Two Populations                                  313
Appendix 13 Review of Chapters 12 and 13                                     375
Chapter 14: Analysis of Variance                                              393
Appendix 14 Review of chapters 12 to 14                                       483
Chapter 15: Chi-Squared Tests                                                   457
Appendix 15 Review of Chapters 12 to 15                                        493
Chapter 16 Simple Linear Regression                                       509
Appendix 16 Review of Chapters 12 to 16                                        565
Chapter 17: Multiple Regression                                                593
Appendix 17 Review of Chapters 12 to 17                                        649
Chapter 18: Model Building                                               671
Chapter 19: Nonparametric Statistical Techniques                                  707
Appendix 19 Review of Chapters 12 to 19                                        761
Chapter 20 Time-Series Analysis and Forecasting                                   793
Chapter 21 Statistical Process Control                                      815
Chapter 22: Decision Analysis                                                   843

        

Chapter 2


2.1 Nominal: Occupation, undergraduate major. Ordinal: Rating of university professor, Taste test ratings. Interval: age, income

2.2 a Interval           
b Interval
c Nominal      
d Ordinal 

2.3 a Interval           
b Nominal       
c Ordinal
d Interval
e Interval

2.4 a Nominal         
b Interval
c Nominal      
d Interval
e Ordinal

2.5 a Interval           
b Interval
c Nominal       
d Interval
e Nominal

2.6 a Interval           
b Interval
c Nominal       
d Ordinal
e Interval

2.7 a Interval
b Nominal
c. Nominal
d Interval
e Interval
f Ordinal

2.8 a Interval
b Ordinal
c Nominal
d Ordinal

2.9 a Interval
b Nominal
c Nominal

2.10 a Ordinal
b Ordinal
c Ordinal
TEst bank for 

CHAPTER 23: CONCLUSION

TRUE/FALSE

     1.   The same statistical techniques apply whether the data is interval, nominal, or ordinal.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

     2.   The source of statistical inference is the sampling distribution.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

     3.   The validity of any statistical outcome depends on the validity of its sample.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

     4.   Statistical inferences are facts and are not based on probability.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

     5.   In hypothesis testing, you start out assuming the null hypothesis is false.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

     6.   If the difference between the null hypothesis and your test statistic is very large, you reject the null hypothesis.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

     7.   If the probability of making a Type II error decreases, the probability of making a Type I error increases.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

     8.   A procedure with a very small probability of a Type I error will also have a very small probability of a Type II error.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

     9.   A larger sample increases the confidence level of a confidence interval.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

   10.   We can use analysis of variance (ANOVA) in place of the t-test when comparing two population means.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

   11.   The Student-t and the F-distributions have no relationship to each other.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

   12.   We can use regression analysis with indicator variables in place of analysis of variance (ANOVA).

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

   13.   The techniques used to analyze nominal data involve a ranking procedure.

ANS:  F                    PTS:   1                    NAT:  Analytic; Statistical Inference

   14.   The techniques used to analyze ordinal data involve a ranking procedure.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

   15.   The standard normal distribution and the Chi-squared distribution are related to each other.

ANS:  T                    PTS:   1                    NAT:  Analytic; Statistical Inference

MULTIPLE CHOICE

   16.   If you use information about a sample to draw a conclusion about a population, you are doing:
a.
Inferential parameters
b.
Descriptive statistics
c.
Inferential statistics
d.
The wrong kind of statistics


ANS:  C                    PTS:   1                    NAT:  Analytic; Statistical Inference

   17.   Which of the following is NOT a type of data?
a.
Parameter data
b.
Nominal data
c.
Ordinal data
d.
Interval data


ANS:  A                   PTS:   1                    NAT:  Analytic; Statistical Inference

   18.   Which type of data involves real numbers?
a.
Nominal data
b.
Interval data
c.
Ordinal data
d.
None of these choices.


ANS:  B                    PTS:   1                    NAT:  Analytic; Statistical Inference

   19.   Which type of data involves categories?
a.
Interval data
b.
Ordinal data
c.
Nominal data
d.
None of these


ANS:  C                    PTS:   1                    NAT:  Analytic; Statistical Inference

   20.   Which type of data involves ratings?
a.
Interval data
b.
Ordinal data
c.
Nominal data
d.
None of these


ANS:  B                    PTS:   1                    NAT:  Analytic; Statistical Inference

   21.   Which of the following is an example of interval data?
a.
The weight of a newborn baby.
b.
The gender of a baby.
c.
Whether or not a baby weighs more than 10 pounds.
d.
Your order of preference of three baby names.


ANS:  A                   PTS:   1                    NAT:  Analytic; Statistical Inference

   22.   Which of the following statements is true?
a.
Descriptive techniques summarize information from samples.
b.
Inferential techniques allow us to make estimates about a population.
c.
Inferential techniques allow us to draw conclusions about a population.
d.
All of these statements are true.


ANS:  D                   PTS:   1                    NAT:  Analytic; Statistical Inference

   23.   Which of the following is an example of nominal data?
a.
The gender of a baby.
b.
The weight of a newborn baby.
c.
The number of other babies born on the same day.
d.
Your order of preference of three baby names.


ANS:  A                   PTS:   1                    NAT:  Analytic; Statistical Inference

   24.   Which of the following is an example of ordinal data?
a.
The weight of a newborn baby.
b.
The gender of a baby.
c.
The number of siblings a baby has.
d.
Your order of preference of three baby names.


ANS:  D                   PTS:   1                    NAT:  Analytic; Statistical Inference

   25.   How do the requirements of nonparametric and parametric techniques compare?
a.
Nonparametric techniques have more restrictions than parametric techniques.
b.
Nonparametric techniques have fewer restrictions than parametric techniques.
c.
Both types of techniques have the same requirements.
d.
There are no requirements for parametric or nonparametric techniques.


ANS:  B                    PTS:   1                    NAT:  Analytic; Statistical Inference

   26.   If your hypothesis test has a very small probability for a Type I error, how does this affect the probability of a Type II error?
a.
It will increase.
b.
It will decrease.
c.
It will be the same as for a Type I error.
d.
No way of knowing without more information.


ANS:  A                   PTS:   1                    NAT:  Analytic; Statistical Inference

   27.   The sampling distributions that are used for interval data are the Student-t and the:
a.
Chi-squared distribution.
b.
Binomial distribution.
c.
Discrete distribution.
d.
F-distribution.


ANS:  D                   PTS:   1                    NAT:  Analytic; Statistical Inference

   28.   The sampling distributions that are used for nominal data are the standard normal distribution and the:
a.
Chi-squared distribution.
b.
Binomial distribution.
c.
F-distribution.
d.
Interval distribution.


ANS:  A                   PTS:   1                    NAT:  Analytic; Statistical Inference

   29.   Which of the following data collection methods is more likely to lead to a definitive conclusion?
a.
Data collected through observation.
b.
Data collected through an experiment.
c.
Data collected through the use of volunteers.
d.
Data collected through a survey.


ANS:  B                    PTS:   1                    NAT:  Analytic; Statistical Inference

COMPLETION

   30.   ____________________ techniques allow us to make estimates and draw conclusions about populations from samples.

ANS:  Inferential

PTS:   1                    NAT:  Analytic; Statistical Inference

   31.   There are three types of data: ____________________; ____________________; and ____________________.

ANS: 
interval; nominal; ordinal
interval; ordinal; nominal
nominal; interval; ordinal
nominal; ordinal; interval
ordinal; interval; nominal
ordinal; nominal; interval

PTS:   1                    NAT:  Analytic; Statistical Inference

   32.   If the difference between our test statistic and the null hypothesis is large, we reject the ____________________ hypothesis.

ANS:  null

PTS:   1                    NAT:  Analytic; Statistical Inference

   33.   The standard that we use to decide whether or not to reject a null hypothesis is the probability of a(n) ____________________.

ANS:  Type I error

PTS:   1                    NAT:  Analytic; Statistical Inference

   34.   In any hypothesis test there are two possible errors, called ____________________ and ____________________.

ANS: 
Type I; Type II
Type II; Type I
Type I errors; Type II errors
Type II errors; Type I errors

PTS:   1                    NAT:  Analytic; Statistical Inference

   35.   Formulas for confidence intervals and test statistics all come from ____________________ distributions.

ANS:  sampling

PTS:   1                    NAT:  Analytic; Statistical Inference

   36.   We can improve the exactitude of a confidence interval estimator by increasing the ____________________.

ANS:  sample size

PTS:   1                    NAT:  Analytic; Statistical Inference

   37.   We can decrease the probability of a Type II error by increasing the ____________________.

ANS:  sample size

PTS:   1                    NAT:  Analytic; Statistical Inference

   38.   The width of a confidence interval ____________________ when more data is collected.

ANS:  decreases

PTS:   1                    NAT:  Analytic; Statistical Inference

   39.   In analyzing interval data, we attempt to explain as much of the ____________________ as possible.

ANS:  variation

PTS:   1                    NAT:  Analytic; Statistical Inference

   40.   The techniques used on ordinal data are based on ranking procedures. We call these ____________________ techniques.

ANS:  nonparametric

PTS:   1                    NAT:  Analytic; Statistical Inference

   41.   To ensure the validity of a statistical technique, we must first check the required ____________________.

ANS:  conditions

PTS:   1                    NAT:  Analytic; Statistical Inference

   42.   We often use a(n) ____________________ technique to analyze data when the conditions for a(n) ____________________ technique are not satisfied.

ANS:  nonparametric; parametric

PTS:   1                    NAT:  Analytic; Statistical Inference

   43.   Two ways in which we can obtain data are through ____________________ or ____________________.

ANS: 
experimentation; observation
observation; experimentation

PTS:   1                    NAT:  Analytic; Statistical Inference

SHORT ANSWER

   44.   Describe a plan for estimating the average GPA at your university by using inferential statistics. Include which statistical technique you plan to use to draw your conclusions.

ANS: 
Select a random sample of n students from this university, where n is large. Find the GPA for each student, and then calculate the mean and standard deviation of the GPA for all n students. Use this information to estimate the average GPA for all students at the university by using a confidence interval.

PTS:   1                    NAT:  Analytic; Statistical Inference

   45.   One prevailing idea amongst statisticians is the idea of "Garbage in / garbage out." Explain the meaning of this phrase and give an example of it.

ANS: 
The validity of any statistical result or conclusion depends on the validity of the sampling procedure, and the data collection process.
Example: A researcher wants to determine which candidate is being favored in the next presidential election, so she goes to the mall on Saturday and asks the first 100 people she sees. Her results are not credible because she used a biased sample.

PTS:   1                    NAT:  Analytic; Statistical Inference


No comments:

Post a Comment

Linkwithin

Related Posts Plugin for WordPress, Blogger...