Solution Manual for Biomaterials: The Intersection of Biology and Materials Science, 1st Edition, Johnna S. Temenoff, Antonios G. Mikos, ISBN-10: 0130097101, ISBN-13: 9780130097101
Solution Manual for Biomaterials: The Intersection of Biology and Materials Science, 1st Edition, Johnna S. Temenoff, Antonios G. Mikos, ISBN-10: 0130097101, ISBN-13: 9780130097101
What is SM(Solution Manual)/IM (Instructor Manual/ISM(Instructor Solution Manual)?
———————————————————————–
Step-Step Solutions of End of Chapter Questions/Problems in the text book
———————————————————————–
Table of Contents
Chapter 1: Materials for Biomedical Applications 1-1
1.1. Introduction to biomaterials 1-2
1.1.1. Important definitions 1-2
1.1.2. History and current status of the field 1-4
1.1.3 Future directions 1-7
1.2. Biological response to biomaterials 1-8
1.3. Biomaterial product testing and FDA approval 1-10
1.4. Types of biomaterials 1-11
1.4.1. Metals 1-11
1.4.2. Ceramics 1-11
1.4.3. Polymers 1-12
1.4.4. Naturally-derived vs. synthetic polymers 1-13
1.5. Processing of biomaterials 1-15
1.6. Important properties of biomaterials 1-16
1.6.1. Degradative properties of biomaterials 1-16
1.6.2. Surface properties of biomaterials 1-17
1.6.3. Bulk properties of biomaterials 1-19
1.6.4. Characterization techniques 1-20
1.7. Principles of chemistry 1-21
1.7.1. Atomic structure 1-22
1.7.2. Atomic models 1-22
1.7.2.1. Bohr model 1-23
1.7.2.2. Wave-mechanical model 1-23
1.7.3. Atomic orbitals 1-24
1.7.3.1. Shapes of orbitals 1-24
1.7.3.2. Order of subshells and the Aufbau principle 1-24
1.7.4. Valence electrons and the periodic table 1-26
1.7.5. Ionic bonding 1-27
1.7.5.1. Bonding and force-distance curves 1-27
1.7.5.2. Characteristics of the ionic bond 1-28
1.7.6. Covalent bonding 1-29
1.7.6.1. Atomic orbitals and hybridization 1-30
1.7.6.2. Molecular orbitals 1-32
1.7.6.3. Mixed bonds 1-33
1.7.7. Metallic bonding 1-34
1.7.8. Secondary forces 1-34
1.8. Summary 1-35
1.9. Problems 1-37
1.10. Tables 1-39
1.11. Figures 1-44
1.12. References 1-70
1.13. Additional reading 1-72
Chapter 2: Chemical Structure of Biomaterials 2-1
2.1. Introduction: Bonding and the structure of biomaterials 2-2
2.2. Structure of Metals 2-2
2.2.1. Crystal Structures 2-2
2.2.1.1. Face-centered cubic structure 2-3
2.2.1.2. Body-centered cubic structure 2-5
2.2.2. Crystal systems 2-6
2.2.3. Defects in crystal structures 2-10
2.2.3.1. Point defects 2-10
2.2.3.2. Impurities 2-11
2.2.4. Solid state diffusion 2-14
2.2.4.1. Diffusion mechanisms 2-14
2.2.4.2. Modeling of diffusion 2-15
2.3. Structure of Ceramics 2-18
2.3.1. Crystal structures 2-19
2.3.1.1. AX crystal structures 2-20
2.3.1.2. AmXp crystal structures 2-20
2.3.1.3. Carbon-based materials 2-21
2.3.2. Defects in crystal structures 2-22
2.3.2.1. Point defects 2-22
2.3.2.2. Impurities 2-24
2.4. Structure of polymers 2-24
2.4.1. General structure 2-25
2.4.1.1. Repeat units 2-25
2.4.1.2. Molecular weight determination 2-26
2.4.1.3. Mer configuration 2-30
2.4.1.4. Polymer structure 2-32
2.4.2. Polymer synthesis 2-34
2.4.2.1. Addition polymerization 2-34
2.4.2.2. Condensation polymerization 2-36
2.4.2.3. Polymer production via genetic engineering 2-36
2.4.3. Copolymers 2-37
2.4.4. Methods of polymerization 2-39
2.4.5. Crystal structures and defects 2-41
2.4.5.1. Crystal structures 2-41
2.4.5.2. Point defects and impurities 2-41
2.5. Techniques: Introduction to material characterization 2-41
2.5.1. X-ray diffraction 2-43
2.5.1.1. Basic principles 2-43
2.5.1.2. Instrumentation 2-45
2.5.1.3. Information provided 2-46
2.5.2. Ultra-violet and visible light spectroscopy (UV-VIS) 2-46
2.5.2.1. Basic principles 2-46
2.5.2.2. Instrumentation 2-47
2.5.2.3. Information provided 2-48
2.5.3. Infra-red spectroscopy (IR) 2-50
2.5.3.1. Basic principles 2-50
2.5.3.2. Instrumentation 2-50
2.5.3.3. Information provided 2-51
2.5.4. Nuclear magnetic resonance spectroscopy (NMR) 2-52
2.5.4.1. Basic principles 2-52
2.5.4.2. Instrumentation 2-54
2.5.4.3. Information provided 2-55
2.5.5. Mass spectrometry 2-55
2.5.5.1. Basic principles 2-55
2.5.5.2. Instrumentation 2-56
2.5.5.3. Information provided 2-57
2.5.6. High-performance liquid chromatography (HPLC):
size-exclusion chromatography 2-57
2.5.6.1. Basic principles 2-58
2.5.6.2. Instrumentation 2-58
2.5.6.3. Information provided 2-60
2.6. Summary 2-62
2.7. Problems 2-64
2.8. Tables 2-69
2.9. Figures 2-79
2.10. References 2-148
2.11. Additional reading 2-149
Chapter 3: Physical Properties of Biomaterials 3-1
3.1. Introduction: From atomic groupings to bulk materials 3-2
3.2. Crystallinity and linear defects 3-2
3.2.1. Dislocations 3-3
3.2.1.1. Edge dislocations 3-3
3.2.1.2. Screw and mixed dislocations 3-4
3.2.1.3. Characteristics of dislocations 3-4
3.2.2. Deformation 3-6
3.3. Crystallinity and planar defects 3-8
3.3.1. External surface 3-8
3.3.2. Grain boundaries 3-9
3.4. Crystallinity and volume defects 3-12
3.5. Crystallinity and polymeric materials 3-13
3.5.1. Percent crystallinity 3-14
3.5.2. Chain folded model of crystallinity 3-16
3.5.3. Defects in polymer crystals 3-17
3.5.3.1. Linear defects 3-17
3.5.3.2. Planar and volume defects 3-18
3.6. Thermal transitions of crystalline and non-crystalline materials 3-18
3.6.1. Viscous flow 3-18
3.6.2. Thermal transitions 3-19
3.6.2.1. Metals and crystalline ceramics 3-19
3.6.2.2. Amorphous ceramics (glasses) 3-19
3.6.2.3. Polymers 3-20
3.7. Techniques: Introduction to Thermal Analysis 3-26
3.7.1. Differential Scanning Calorimetry 3-27
3.7.1.1. Basic principles 3-27
3.7.1.2. Instrumentation 3-27
3.7.1.3. Information provided 3-28
3.8. Summary 3-30
3.9. Problems 3-32
3.10. Tables 3-35
3.11. Figures 3-38
3.12. References 3-63
3.13. Additional reading 3-64
Chapter 4: Mechanical Properties of Biomaterials 4-1
4.1. Introduction: Modes of mechanical testing 4-3
4.2. Mechanical testing methods, results and calculations 4-3
4.2.1. Tensile and shear properties 4-4
4.2.1.1. Calculations for tensile and shear tests 4-4
4.2.1.2. Stress-strain curves and elastic deformation 4-5
4.2.1.3. Molecular causes of elastic deformation 4-8
4.2.1.4. Stress-strain curves and plastic deformation 4-8
4.2.1.5. Molecular causes of plastic deformation 4-16
4.2.1.5.1. Metals and crystalline ceramics 4-17
4.2.1.5.2. Amorphous polymers and ceramics (glasses) 4-18
4.2.2. Bending properties 4-24
4.2.3. Time-dependent properties 4-27
4.2.3.1. Creep 4-27
4.2.3.2. Molecular causes of creep 4-29
4.2.3.2.1. Metals 4-29
4.2.3.2.2. Ceramics 4-30
4.2.3.2.3. Polymers 4-30
4.2.3.3. Stress relaxation and its causes 4-31
4.2.3.4. Mathematical models of viscoelastic behavior 4-31
4.2.3.4.1. Maxwell model 4-33
4.2.3.4.2. Voigt model 4-34
4.2.4. Influence of porosity and degradation on mechanical properties 4-39
4.3. Fracture and failure 4-40
4.3.1. Ductile and brittle fracture 4-40
4.3.2. Polymer crazing 4-41
4.3.3. Stress concentrators 4-42
4.4. Fatigue and fatigue testing 4-43
4.4.1. Fatigue 4-43
4.4.2. Fatigue testing 4-44
4.4.3. Factors that affect fatigue life 4-45
4.5. Methods to improve mechanical properties 4-46
4.6. Techniques: Introduction to Mechanical Analysis 4-49
4.6.1. Mechanical Testing 4-49
4.6.1.1. Basic principles 4-49
4.6.1.2. Instrumentation 4-50
4.6.1.3. Information provided 4-51
4.7. Summary 4-51
4.8. Problems 4-54
4.9. Figures 4-58
4.10. References 4-101
4.11. Additional reading 4-101
Chapter 5: Biomaterial Degradation 5-1
5.1. Introduction: Degradation in the biological environment 5-2
5.2. Corrosion/degradation of metals and ceramics 5-3
5.2.1. Fundamentals of corrosion 5-3
5.2.1.1. Oxidation-reduction reactions 5-3
5.2.1.2. Half-cell potentials 5-5
5.2.1.3. Nernst equation 5-6
5.2.1.4. Galvanic corrosion 5-9
5.2.2. Pourbaix diagrams and passivation 5-9
5.2.3. Contribution of processing parameters 5-12
5.2.3.1. Crevice corrosion 5-12
5.2.3.2. Pitting corrosion 5-13
5.2.3.3. Intergranular corrosion 5-13
5.2.4. Contribution of the mechanical environment 5-13
5.2.4.1. Stress and galvanic corrosion 5-14
5.2.4.2. Stress corrosion cracking 5-14
5.2.4.3. Fatigue corrosion 5-14
5.2.4.4. Fretting corrosion 5-15
5.2.5. Contribution of the biological environment 5-15
5.2.6. Means of corrosion control 5-16
5.2.7. Ceramic degradation 5-17
5.3. Degradation of polymers 5-18
5.3.1. Primary means of polymer degradation 5-18
5.3.2. Chain scission by hydrolysis 5-19
5.3.3. Chain scission by oxidation 5-20
5.3.4. Other means of degradation 5-21
5.3.4.1. Environmental stress cracking 5-21
5.3.4.2. Enzyme-catalyzed degradation 5-22
5.3.5. Effect of porosity 5-22
5.4. Biodegradable materials 5-22
5.4.1. Biodegradable ceramics 5-24
5.4.1.1. Erosion mechanisms 5-24
5.4.1.2. Factors that influence degradation rate 5-24
5.4.2. Biodegradable polymers 5-25
5.4.2.1. Introduction and definitions 5-25
5.4.2.2. Degradation mechanisms 5-28
5.4.2.3. Factors the influence degradation rate 5-29
5.5. Techniques: Assays for extent of degradation 5-29
5.6. Summary 5-30
5.7. Problems 5-32
5.8. Tables 5-37
5.9. Figures 5-40
5.10. References 5-54
5.11. Additional reading 5-55
Chapter 6: Biomaterial Processing 6-1
6.1. Introduction: Importance of biomaterials processing 6-2
6.2. Processing to improve bulk properties 6-2
6.2.1. Metals 6-2
6.2.1.1. Alloying 6-3
6.2.1.2. Strain hardening 6-4
6.2.1.3. Grain size refinement 6-5
6.2.1.4. Annealing 6-6
6.2.1.5. Precipitation hardening 6-9
6.2.2. Ceramics 6-9
6.2.3. Polymers 6-9
6.3. Processing to form desired shapes 6-12
6.3.1. Metals 6-12
6.3.1.1. Forming 6-12
6.3.1.1.1. Forging 6-13
6.3.1.1.2. Rolling 6-13
6.3.1.1.3. Extrusion 6-13
6.3.1.1.4. Drawing 6-13
6.3.1.2. Casting 6-14
6.3.1.2.1. Sand casting 6-14
6.3.1.2.2. Investment casting 6-15
6.3.1.3. Powder processing 6-15
6.3.1.4. Rapid manufacturing 6-16
6.3.1.5. Welding 6-16
6.3.1.6. Machining 6-17
6.3.2. Ceramics 6-17
6.3.2.1. Glass forming techniques 6-17
6.3.2.2. Casting and firing 6-18
6.3.2.2.1. Casting 6-18
6.3.2.2.2. Firing 6-19
6.3.2.3. Powder processing 6-20
6.3.2.4. Rapid manufacturing 6-20
6.3.3. Polymers 6-21
6.3.3.1. Thermoplasts vs. thermosets 6-21
6.3.3.2. Forming 6-23
6.3.3.2.1. Extrusion 6-23
6.3.3.2.2. Fiber spinning 6-23
6.3.3.3. Casting 6-25
6.3.3.3.1. Compression molding 6-25
6.3.3.3.2. Injection molding 6-25
6.3.3.3.3. Blow molding 6-25
6.3.3.4. Rapid manufacturing 6-26
6.4. Processing to improve biocompatibility 6-26
6.4.1. Sterilization 6-27
6.4.1.1. Steam sterilization 6-28
6.4.1.2. Ethylene oxide sterilization 6-28
6.4.1.3. Radiation sterilization 6-29
6.4.2. Fixation of natural materials 6-30
6.5. Summary 6-30
6.6. Problems 6-32
6.7. Tables 6-34
6.8. Figures 6-35
6.9. References 6-54
6.10. Additional reading 6-55
Chapter 7: Surface Properties of Biomaterials 7-1
7.1. Introduction: Concepts in surface chemistry and biology 7-2
7.1.1. Protein adsorption and biocompatibility 7-2
7.1.2. Surface properties governing protein adsorption 7-3
7.2. Physicochemical surface modification techniques 7-6
7.2.1. Introduction to surface modification techniques 7-6
7.2.2. Physicochemical surface coatings 7-7
7.2.2.1. Covalent surface coatings 7-7
7.2.2.1.1. Plasma treatment 7-7
7.2.2.1.2. Chemical vapor deposition 7-10
7.2.2.1.3. Physical vapor deposition 7-10
7.2.2.1.4. Radiation grafting/photografting 7-11
7.2.2.1.5. Self-assembled monolayers 7-12
7.2.2.2. Non-covalent surface coatings 7-14
7.2.2.2.1. Solution coatings 7-14
7.2.2.2.2. Langmuir-Blodgett films 7-14
7.2.2.2.3. Surface-modifying additives 7-15
7.2.3. Physicochemical surface modification methods with no overcoat 7-16
7.2.3.1. Ion beam implantation 7-17
7.2.3.2. Plasma treatment 7-18
7.2.3.3. Conversion coatings 7-18
7.2.3.4. Bioactive glasses 7-18
7.2.4. Laser methods for surface modification 7-19
7.3. Biological surface modification techniques 7-20
7.3.1. Covalent biological coatings 7-20
7.3.2. Non-covalent biological coatings 7-23
7.3.3. Immobilized enzymes 7-24
7.4. Surface properties and degradation 7-25
7.5. Patterning techniques for surfaces 7-25
7.6. Techniques: Introduction to surface characterization 7-27
7.6.1. Contact angle analysis 7-27
7.6.1.1. Basic principles 7-27
7.6.1.2. Instrumentation 7-30
7.6.1.3. Information provided 7-30
7.6.2. Light microscopy 7-31
7.6.2.1. Basic principles 7-31
7.6.2.2. Instrumentation 7-31
7.6.2.3. Information provided 7-32
7.6.3. Electron spectroscopy for chemical analysis (ESCA) or
X-ray photoelectron spectroscopy (XPS) 7-33
7.6.3.1. Basic principles 7-33
7.6.3.2. Instrumentation 7-34
7.6.3.3. Information provided 7-35
7.6.4. Attenuated total internal reflectance Fourier transform
infra-red spectroscopy (ATR-FTIR) 7-35
7.6.4.1. Basic principles 7-35
7.6.4.2. Instrumentation 7-36
7.6.4.3. Information provided 7-37
7.6.5. Secondary ion mass spectrometry (SIMS) 7-37
7.6.5.1. Basic principles 7-37
7.6.5.2. Instrumentation 7-38
7.6.5.3. Information provided 7-38
7.6.5. Electron microscopy: Transmission electron microscopy (TEM)
and Scanning electron microscopy (SEM) 7-39
7.6.6.1. Basic principles 7-39
7.6.6.2. Instrumentation 7-40
7.6.6.3. Information provided 7-41
7.6.6. Scanning probe microscopies (SPM):
Atomic force microscopy (AFM) 7-42
7.6.7.1. Basic principles 7-42
7.6.7.2. Instrumentation 7-42
7.6.7.3. Information provided 7-44
7.7. Summary 7-46
7.8. Problems 7-48
7.9. Tables 7-53
7.10. Figures 7-58
7.11. References 7-107
7.12. Additional reading 7-109
Chapter 8: Protein Interactions with Biomaterials 8-1
8.1. Introduction: Thermodynamics of protein adsorption 8-2
8.1.1. Gibbs free energy and protein adsorption 8-2
8.1.2. System properties governing protein adsorption 8-5
8.2. Protein structure 8-7
8.2.1. Amino acid chemistry 8-7
8.2.2. Primary structure 8-8
8.2.3. Secondary structure 8-9
8.2.4. Tertiary structure 8-12
8.2.5. Quaternary structure 8-13
8.3. Protein transport and adsorption kinetics 8-15
8.3.1. Transport to the surface 8-15
8.3.2. Adsorption kinetics 8-17
8.4. Reversibility of protein adsorption 8-18
8.4.1. Reversible and irreversible binding 8-18
8.4.2. Desorption and exchange 8-19
8.5. Techniques: Assays for protein type and amount 8-22
8.5.1. High-performance liquid chromatography: affinity chromatography 8-23
8.5.1.1. Basic principles 8-23
8.5.1.2. Instrumentation 8-24
8.5.1.3. Information provided 8-25
8.5.2. Colorimetric assays 8-28
8.5.2.1. Basic principles and instrumentation 8-28
8.5.3. Fluorescent assays 8-29
8.5.3.1. Basic principles 8-29
8.5.3.2. Instrumentation 8-30
8.5.3.3. Information provided 8-30
8.5.4. Enzyme-linked immunosorbent assay (ELISA) 8-31
8.5.4.1. Basic principles and procedures 8-31
8.5.5. Western blotting 8-32
8.5.5.1. Basic principles and procedures 8-32
8.6. Summary 8-33
8.7. Problems 8-35
8.8. Tables 8-39
8.9. Figures 8-42
8.10. References 8-74
8.11. Additional reading 8-75
Chapter 9: Cell Interactions with Biomaterials 9-1
9.1. Introduction: Cell-surface interactions and cellular functions 9-2
9.2. Cellular structure 9-3
9.2.1. Cell membrane 9-3
9.2.2. Cytoskeleton 9-5
9.2.3. Mitochondria 9-6
9.2.4. Nucleus 9-7
9.2.4.1. Structure and function of the nucleus 9-7
9.2.4.2. Structure of DNA 9-7
9.2.4.3. Structure of RNA 9-8
9.2.5. Endoplasmic reticulum 9-9
9.2.6. Vesicles 9-10
9.2.7. Membrane receptors and cell contacts 9-11
9.2.7.1. Types of cell contacts 9-11
9.2.7.2. Types of membrane receptors and ligands 9-12
9.3. Extracellular environment 9-14
9.3.1. Collagen 9-14
9.3.2. Elastin 9-16
9.3.3. Proteoglycans 9-16
9.3.4. Glycoproteins 9-17
9.3.5. Other ECM components 9-19
9.3.6. Matrix remodeling 9-20
9.3.7. ECM molecules as biomaterials 9-21
9.4. Cell-environment interactions affect cellular functions 9-23
9.4.1. Cell survival 9-24
9.4.2. Cell proliferation 9-25
9.4.2.1. Cell cycle: Interphase 9-25
9.4.2.2. Cell cycle: Mitosis 9-26
9.4.3. Cell differentiation 9-27
9.4.4. Protein synthesis 9-28
9.4.4.1. Collagen synthesis: transcription 9-29
9.4.4.2. Collagen synthesis: translation and post-translational modification 9-30
9.5. Models of adhesion, spreading and migration 9-34
9.5.1. Basic adhesion models: DLVO theory 9-34
9.5.2. DLVO theory limitations and further models 9-36
9.5.3. Models of cell spreading and migration 9-37
9.5.3.1. Cell spreading 9-37
9.5.3.2. Cell migration 9-37
9.6. Techniques: Assays to determine effects of cell-material interactions 9-43
9.6.1. Cytotoxicity assays 9-43
9.6.1.1. Direct contact assay 9-44
9.6.1.2. Agar diffusion assay 9-45
9.6.1.3. Elution assay 9-46
9.6.2. Adhesion/spreading assays 9-47
9.6.3. Migration assays 9-48
9.6.4. DNA and RNA assays 9-49
9.6.4.1. Polymerase chain reaction (PCR) and Reverse-transcription
polymerase chain reaction (RT-PCR) 9-50
9.6.4.2. Southern and Northern blotting 9-51
9.6.5. Protein production assays: Immunostaining 9-52
9.7. Summary 9-53
9.8. Problems 9-57
9.9. Tables 9-61
9.10. Figures 9-62
9.11. References 9-113
9.12. Additional reading 9-115
Chapter 10: Biomaterial Implantation and Acute Inflammation 10-1
10.1. Introduction: Overview of innate and acquired immunity 10-2
10.1.1. Characteristics of leukocytes 10-3
10.1.1.1. Leukocyte types 10-3
10.1.1.2. Leukocyte formation 10-4
10.1.1.3. Life span of leukocytes 10-4
10.1.2. Sources of innate immunity 10-5
10.2. Clinical signs of inflammation and their causes 10-5
10.3. Role of tissue macrophages and neutrophils 10-6
10.3.1. Migration of neutrophils 10-7
10.3.2. Actions of neutrophils 10-8
10.3.2.1. Phagocytosis 10-8
10.3.2.2. Respiratory burst 10-9
10.3.2.3. Secretion of chemical mediators 10-9
10.4. Role of other granulocytes 10-11
10.4.1. Monocytes/macrophages 10-11
10.4.2. Actions of macrophages 10-11
10.4.2.1. Phagocytosis and biomaterials 10-11
10.4.2.2. Secretion of chemical mediators 10-13
10.4.2.3. Role as antigen presenting cells 10-14
10.4.3. Other granulocytes 10-15
10.5. Termination of acute inflammation 10-16
10.6. Techniques: In vitro assays for inflammatory response 10-17
10.6.1. Leukocyte assays 10-17
10.6.2. Other assays 10-19
10.7. Summary 10-20
10.8. Problems 10-22
10.9. Tables 10-24
10.10. Figures 10-27
10.11. References 10-34
10.12. Additional reading 10-34
Chapter 11: Wound Healing and the Presence of Biomaterials 11-1
11.1. Introduction: Formation of granulation tissue 11-2
11.2. Foreign body reaction 11-3
11.3. Fibrous encapsulation 11-4
11.4. Chronic inflammation 11-7
11.5. Four types of resolution 11-8
11.6. Repair vs. regeneration: wound healing in skin 11-9
11.6.1. Skin repair 11-9
11.6.2. Skin regeneration 11-11
11.7. Techniques: In vivo assays for inflammatory response 11-12
11.7.1. Considerations in development of animal models 11-14
11.7.1.1. Choice of animal 11-14
11.7.1.2. Choice of implant site 11-14
11.7.1.3. Length of study 11-14
11.7.1.4. Biomaterial considerations: dose and administration 11-15
11.7.1.5. Inclusion of proper controls 11-16
11.7.2. Methods of assessment 11-17
11.7.2.1. Histology/immunohistochemistry 11-17
11.7.2.2. Electron microscopy 11-17
11.7.2.3. Biochemical assays 11-18
11.7.2.4. Mechanical testing 11-19
11.8. Summary 11-20
11.9. Problems 11-22
11.10. Tables 11-25
11.11. Figures 11-28
11.12. References 11-36
11.13. Additional reading 11-37
Chapter 12: Immune Response to Biomaterials 12-1
12.1. Introduction: Overview of acquired immunity 12-2
12.2. Antigen presentation and lymphocyte maturation 12-4
12.2.1. Major histocompatibility complex (MHC) molecules 12-4
12.2.1.1. MHC Class I 12-4
12.2.1.2. MHC Class II 12-4
12.2.1.3. MHC molecule variation and tissue typing 12-5
12.2.1.4. Intracellular complexation with MHC molecules 12-6
12.2.2. Maturation of lymphocytes 12-7
12.2.3. Activation and formation of clonal populations 12-8
12.3. B cells and antibodies 12-8
12.3.1. Types of B cells 12-8
12.3.2. Characteristics of antibodies 12-9
12.3.2.1. Structure of antibodies 12-9
12.3.2.2. Classes of antibodies 12-9
12.3.2.3. Mechanisms of antibody action 12-10
12.4. T cells 12-12
12.4.1. Types of T cells 12-12
12.4.2. Helper T lymphocytes (Th) 12-12
12.4.3. Cytotoxic T lymphocytes (Tc) 12-13
12.5. The complement system 12-14
12.5.1. Classical pathway 12-14
12.5.2. Alternative pathway 12-15
12.5.3. Membrane attack complex 12-16
12.5.4. Regulation of the complement system 12-17
12.5.5. Effects of the complement system 12-18
12.6. Undesired immune responses to biomaterials 12-19
12.6.1. Innate vs. acquired responses to biomaterials 12-20
12.6.2. Hypersensitivity 12-20
12.6.2.1. Type I: IgE mediated 12-21
12.6.2.2. Type II: Antibody mediated 12-21
12.6.2.3. Type III: Immune complex mediated 12-22
12.6.2.4. Type IV: T cell mediated 12-22
12.6.2.5. Hypersensitivity and the classes of biomaterials 12-23
12.7. Techniques: Assays for immune response 12-25
12.7.1. In vitro assays 12-25
12.7.2. In vivo assays 12-27
12.8. Summary 12-28
12.9. Problems 12-32
12.10. Tables 12-34
12.11. Figures 12-35
12.12. References 12-51
12.13. Additional reading 12-51
Chapter 13: Biomaterials and Thrombosis 13-1
13.1. Introduction: Overview of hemostasis 13-2
13.2. Role of platelets 13-2
13.2.1. Platelet characteristics and functions 13-2
13.2.2. Platelet activation 13-3
13.2.2.1. Means of activation 13-3
13.2.2.2. Sequelae of activation 13-3
13.3. Coagulation cascade 13-5
13.3.1. Intrinsic pathway 13-5
13.3.2. Extrinsic pathway 13-6
13.3.3. Common pathway 13-7
13.4. Means of limiting clot formation 13-9
13.5. Role of endothelium 13-11
13.6. Tests for hemocompatibility 13-13
13.6.1. General testing concerns 13-13
13.6.2. In vitro assessment 13-14
13.6.3. In vivo assessment 13-16
13.7. Summary 13-18
13.8. Problems 13-20
13.9. Tables 13-25
13.10. Figures 13-27
13.11. References 13-32
13.12. Additional reading 13-33
Chapter 14: Infection, Tumorigenesis and Calcification of Biomaterials 14-1
14.1. Introduction: Overview of other potential problems with
biomaterials implantation 14-2
14.2. Infection 14-2
14.2.1. Common pathogens and categories of infection 14-3
14.2.2. Steps to infection 14-4
14.2.3. Characteristics of the bacterial surface, the
biomaterial surface and the media 14-5
14.2.3.1. Bacterial surface properties 14-5
14.2.3.1.1. Gram positive vs. gram negative bacteria 14-5
14.2.3.1.2. Cell capsule and biofilm 14-6
14.2.3.2. Biomaterial surface properties 14-7
14.2.3.3. Media properties 14-8
14.2.4. Bacterial adhesion involves both specific and
non-specific interactions 14-8
14.2.5. Summary of implant-associated infections 14-9
14.3. Techniques for infection experiments 14-10
14.3.1. Means to characterize bacterial surfaces 14-11
14.3.1.1. Surface hydrophobicity 14-11
14.3.1.2. Surface charge 14-12
14.3.2. In vitro and in vivo models of infection 14-14
14.3.2.1. In vitro bacterial adhesion 14-14
14.3.2.2. Ex vivo and in vivo infection models 14-15
14.4. Tumorigenesis 14-16
14.4.1. Definitions and steps of tumorigenesis 14-16
14.4.2. Chemical vs. foreign body carcinogenesis 14-18
14.4.3. Timeline for foreign body tumorigenesis 14-19
14.4.3.1. Foreign body tumorigenesis with large implants 14-19
14.4.3.2. Foreign body tumorigenesis with small fibers 14-20
14.4.4. Summary of biomaterials-related tumorigenesis 14-20
14.5. Techniques for tumorigenesis experiments 14-21
14.5.1. In vitro models 14-21
14.5.2. In vivo models 14-22
14.6. Pathologic calcification 14-23
14.6.1. Introduction to pathologic calcification 14-23
14.6.2. Mechanism of pathologic calcification 14-24
14.6.3. Summary and techniques to reduce pathologic calcification 14-26
14.7. Techniques for pathologic calcification experiments 14-26
14.7.1. In vitro models of calcification 14-27
14.7.2. In vivo models of calcification 14-27
14.7.3. Sample assessment 14-28
14.8. Summary 14-30
14.9. Problems 14-33
14.10. Figures 14-36
14.11. References 14-45
14.12. Additional reading 14-46
List of Abbreviations Appendix I-1
List of Symbols Appendix I-6
Index Index 1
No comments:
Post a Comment